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Abstract — This paper presents a series solution for the local surface temperature history fpr a semi—inf:lr}ite
body heated only over a circular region. Inside this region the heat flux is constant with time and position
while outside the circular area the surface is insulated. A number of approximate solutions are available in the
literature. One exact solution is available but it is in the form of an integral with an infinite domain. The
solution developed herein is much more convenient to use for all dimensionless times except the smallest.

Extensive curves and tables are provided also.

In addition to the surface solution there is a solution for certain interior locations also for ‘large’ times.

The solution is important because it is a basic geometry in heat conduction and is frequently needed in

connection with cylindrical bodies. The solution can be utilized as a building block for related finite

geometries for time-variable heating and for symmetric spatially-varying heat flux cases. It can also be used in
a promising new calculation method that is calied the surface element method.

NOMENCLATURE
a, radius of heated area;
c, radius of region for average temperature;
Cy coefficient defined by equation (19);
Cps specific heat;
Dy(r), function defined by equation (14a);
E(), complete elliptic integral of the second
kind;
I,, function given by equation (18);
k, thermal conductivity;
K(), complete elliptic integral of the first kind ;
Ji()s Bessel function of the first kind;
q, heat flux;
r, radial coordinate;
t, time;
T, temperature;
Uyjr function given by equation (20);
Vix), function given by equation (38a);
Wix), function given by equation (38b);
z, axial coordinate ;
a, thermal diffusivity ;
I'(n), Gamma function;
I'(n, x), incomplete Gamma function;
0, density.

INTRODUCTION

THE CASE of a semi-infinite solid heated by a disk heat
source is a basic building block in transient heat
conduction. Though many analyses have been made
no exact solution has been previously developed that is
valid for all times and locations within the body and
that can be conveniently evaluated. Only for the
centerline is there a convenient exact transient solution
available. This paper provides an exact series solution
for any surface location and for all times except for the
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smallest. Another solution is included that is valid for
some interior locations and for ‘large’ times.

Some of the pioneering solutions were employed for
analysis of electric contacts and sliding contacts; see
the book by Holm and Holm [1]. Oosterkamp [2] was
interested in heat dissipation at the anode of an X-ray
tube. More recently Yovanovich and co-workers
[3-5] presented results motivated by the contact
conductance problem. None of these papers provided
an exact solution for the transient temperature distri-
bution. An exact solution is known, however; it is in
Carslaw and Jaeger [6] and is attributed to Ooster-
kamp. It provided a starting point for some of the work
in this paper. It is in the form of an integral with limits
of zero and infinity and has an integrand involving
error and Bessel functions. The integral is difficult to
accurately evaluate using a numerical procedure be-
cause the domain is infinite and because of the
sinusoidal nature of the Bessel functions. Though this
integral presents a solution valid for any radius and
depth, accurate values are difficult to obtain except
along the centerline.

Thomas [7] gave an exact solution in terms of
tabulated functions for the steady state at the heated
surface. Analytical expressions were presented by Beck
[8] for the average transient temperature over the
radial region from the center to the heated region
radius. Any depth in the body was considered. Closed
form series expressions were given and some extremely
accurate approximations were provided. Local tem-
peratures at any position in the body were not covered,
however.

Two of the main purposes of this paper are to
provide series expression valid for (1) any radial
location at the heated surface and (2) certain internal
locations. Solutions are derived for ‘large’ times which
also converge for relatively small times such as at/a® ~
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FiG. 1. Semi-infinite body heated over a disk-shaped region
centered at r = Oand z = O and insulated elsewhere at z = 0.

0.04 for r < awhere ais the radius of the disk source. A
solution is also presented for the average temperature
from the centerline to any radial location. It is further
shown how the solution can be used to generate a
solution for an arbitrary-in-r heat flux.

GEOMETRY AND MATHEMATICAL DESCRIPTION

The geometry and coordinates are shown in Fig. 1.
The body is isotropic, homogeneous and semi-infinite;
it is conveniently described using the cylindrical
coordinates r and z. The surface is insulated except
over the circular region from r = 0 to g where thereisa
constant heat flux q.

A mathematical statement of the problem is the
solution of

k[li(r ?E) + i{] = pc fqz (1a)

ror\ or oz P ot

S S PR

T, z,t)=0forr— 2 and z » o« {lc)
T(r,z,0)=0. (1d)

With the initial temperature being zero, the symbol T
can be interpreted as the temperature rise. The proper-
ties k. p and ¢, are assumed to be independent of
temperature and position.

AVAILABLE SOLUTIONS
The exact solution given by Carslaw and Jaeger ([6],
p. 264) is
T(rz,0) 1

o _2L Jo(ir), GGa)

x {e'“ erfc [2@%)1—72 - Z(at)l’z]

z di
iz “ ; 1/2 o
e erfc [—‘"—2(01” 7t Z{ot) ]} 5 (2a)

This expression is valid for all r and z values equal to
and greater than zero. At z = 0, the location of primary
interest, this expression reduces to

[‘1 erf [ A(or)'/?] &QM d
<O v

T(r.0,0)
gak

(2b)
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which is difficult to evaluate numerically as mentioned
above. For convenience, the above equations can be
written in dimensionless form. Define
¥ Zo . R . 2l
-7 sl o {34}
a a a®
Tirt, =717} 3h
gu'k J

Then (2b) can be written (with the pluses dropped) as

T(r. 0, t) = f erf[Ae17] {-O—(ff.)i‘—(fi} dz
3

JO

4)

and (2a) can be similarly written.

At the centerline (r = 0) Carslaw and Jaeger [6]
present for any z the convenient dimensionless so-
ution of

5

T, z, 1) = ZII‘Z[ierfc (ﬁz)

-2 1312
—~ ierfc ( & ‘;’ f)ﬂ
\ A S J

For the heated surface (z = 0) and at r = 0, this
equation yields

] ’ { . C
1 (0, O, [) = 2[1'2 Ij;t—{’? - 16!’&?(2}"}—55 >‘l

. /

i 1:2
= erfe (W) + 2 (;) [1—e™t*] (6a)

{5)

which for small ¢ values can be approximated by

1\ e
T{00, t) & 2(~> [1 - 2t{1 — 6¢ + 60s%) e~ 1],

T

o (6b)
For t values less than 0.02, and to 6 decimal places (6b)
can be given simply by 2(¢/n)"?; this is the same
expression as for the surface temperature of a semi-
infinite body that is uniformly heated.

Thomas [7] derived an exact steady state solution

for the surface temperature in terms of known func-
tions. He gave for 0 < r < |,

b
T(r, 0, %) = = E{r) (7
ks

and forr > 1
2r - g

T(r. 0, w)y= —[E(r™ "y — (1L — r K] (8a)
7

Atr = 1, T(1, 0, o) = 2/xn. For ‘large’ r (8a) can be
approximated by

1

3
e e e L (8D
2027 222 _J (8b)
The leading term of {8b} is 1/2r which is the same as
given by a point heat source. The functions K(-) and
E(-) are the complete elliptic integrals of the first and
second kinds,

1
T(r, 0, ) = ;[1 +
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n/2
K(e) = J‘ [1 — ¢*sin? 0] !2d6 (9a)
0

E(e) = J "l sin?0]i2de.  (ob)

0
These functions are tabulated in [9] and are available
in computer libraries. This convenient exact solution
for the steady state is utilized in the exact series
solution developed below for the transient case.

SERIES SOLUTION

By using the relation between erfc(-) and erf(-), (4)
can be given by

© Jo(r) 4 (2
T(r, 0, t)——-f Mdi
. h

—f erfc(At!’?) di. (10

0

Jo(Ar)J 1 (4)
A

Notice that the first integral is a steady state term and
the second term goes to zero as t — oo. Hence, the first
integral is equal to either (7) or (8a) depending on the
range of r.

Consider now the second integral in (10). The
function erfc(-) has very small values for the argument
greater than about 4. Hence, for evaluating the in-
tegral, only 2 values less than 4t~ !/? need be con-
sidered. For ‘large’ ¢ values this means that small A’s are
of interest. Consequently, the defining series ex-
pressions for J, and J, can be effectively used ; the first
few terms of each are

Gt ont G
4 T &y ARy
2% 4P 625

=7 - 2oy T ey T

JoUry =1 — +...(11)

(12)

The product of these two functions when the 2
coefficients are collected is

ee]

Jo(r) (2) = ¥ (=1¥(2/2)* Dy(r)

i=0

(13)

where D,(r) is

i1 pi-1 2
Dyr) = j; (i —J+2)[m] (14a)

wherei = 0, 1,2,.... The first few values of Dy(r) are

14212 1+6r2+3r*
Do(r) = 1,Dy(r) = ——— Dy(r) = ——""T_ (14b)
2 12
1+ 12r2 4+ 18/* + 4r°
Dy(r) = T T (140
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By using the integral relation for erfc(-), the second
integral in (10) can be written as

2 (= (* ., Jon
I, = ~—f f e gy TP o)
\/7"' o Ju® A
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= % r r e [Jo(ar)Jy(A)]d2dv  (15)

112 Jg

where the substitution u = Avis used and the order of
integration is interchanged. Note that

Temww gy =L
0 22i+2

(16)

Introducing (13) into (15), using (16) and then

integrating over v produces the expression for (15) of
12 (= )i

I, = -

N ,.;, Qi + 1))

Dy(r). (7

A much more convenient form for computer (or
programmable calculator) evaluation is

12 (-1 & k—j+l

L=- g L G ,.; Ui (19
where
C, = 4k + D[k + 1)1] (19)
Uy =1 (20a)
Uy = Uy, j-4 (k;J:i;Z)r ;o k=1, 2, 3
ji=2, 3, ...k (20b)

where (20b) is a recursion relation.

In summary for 0 < r < 1, a series expression for T
atz = 0is

2
T(r0,t) = ;E(r) — I 1) (21)

where the functional dependence of I, is noted. For r
> 1, replace (2/n)E(r) by (8a). The I,(r, t) function is
calculated using (18)—(20). These exact expressions are
very efficient for ‘large’ times because the infinite
summation in I, can be approximated with just a few
terms.

In order to display clearly the nature of the sum-
mation in I,, several terms are now given,

T(r.0,t) = T(r, 0, ©) —

1422
x <1 —
24¢

1
2/mt

(1643
agoz L6743

1
T 107524

Note that the denominators 24, 480, etc. are the Cy
values given by (19). A more extensive set of values C,
and of the coefficients of r2" are given in Table 1.
Typical results for the local dimensionless tempera-
ture are given for various r and ¢ values in Tables 2 and
3. The dimensionless times start at 0.04 and go to
infinity. The number of terms required in the series
increases quite rapidly as the dimensionless times
become small, as shown in Table 4. Fortunately for a
large range of ¢, the required number of terms is quite
modest, e.g. less than 7 for r = Ofor¢t > 1 to obtain 8

(1+ 122 +18r* + 4r%) + } (22)
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k C,

0 I
1 24
2 480
3 10752
4 276 480
5 8110080
6 268 369 920
;

9909 043 200

Table 2. Values of local dimensionless temperatures for series solution
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n=

(o]
12
20
30
42
56

— e s e |

r =025

Time, ¢
004  0.225647 0.225487
0.06  0.276003 0.275194
0.08 0.317551 0.315717
0.10  0.352882 0.349891
0.20 0.473895 0.466184
0.40  0.595213 0.583412
0.60  0.659147 0.645795
0.80  0.700063 0.685949
1.00 0.729097 0.714546
200  0.804583 0.789251
4.00  0.860404 0.844767
10.00 0911164 0.895396
40.00 0.955443 0.939636
100.00 0.971802 0.955991
400.00 0.985897 0.970084
1000.00 0.991080 0.975267
4000.00 0.995540 0.979727
10000.00  0.997179 0.981366
40000.00  0.998590 0.982776
100000.00  0.999108 0.983295

Infinity

1.000000

0.984187

Table 3. Values of local dimensionless temperatures for series solution given by equation (22). For radii equal to 1.25-8

Time, ¢ r=1.25
0.08 0.029169
0.10 0.037316
0.20 0.072147

0.40 0.121933

0.60 0.156405
0.80 0.181959
1.00 0.201817
4.00 0.308779
10.00 0.356370
40.00 0.399662
100.00 0.415914
400.00 0.429976
1000.00 0.435156
4000.00 0.439615
10 000.00 0.441254
40 000.00 0.442664
100 000.00 0.443183
Infinity 0.444075

r=1.50

0.009490
0.027664
0.0607%4
0.087005
0.107766
0.124566
0.222454
0.268718
0.311585
0.327789
0.341837
0.347015
0.351474
0.353113
0.354523
0.355042

Coefficients of r="

1 e n=73
3

18 4

60 40

150 200

315 700
SRR

0.223512

0.269833
0.306483
0.336874
0.439395
0.545075
0.603023
0.640975
0.668298
0.740710
0.795324
0.845562
0.889682
0.906024
0.920113
0.925295
0.929755
0.931395
0.932805
0.933323

0.934215

0.355934

1960

r=0.75
0.208596
0.245591
0.274376
0.298166
0.379665
0.468351
0.519584
0.554129
0.579454
0.648203
0.701345
0.750939
0.794861
0.811181
0.825264
0.830446
0.834905
0.836544
0.837955
0.838473
0.839365

r=2.00

0.003456
0.014967
0.027959
0.040180
0.051148
0.129605
0.172666
0.214469
0.230554
0.244566
0.249741
0.254198
0.255837
0.257247
0.257766
0.2586358

Table 1. Coefficients of terms in equations (18) and (22)

n=4 ]
S

75 6

525 126

2450 1176

r=09
0.174404
0.202785
0.225293
0.244201
0.311190
0.388229
0.434689
0.466752
0.490599
0.556583
0.608589
0.657679
0.701444
0.717747
0.731825
0.737006
0.741465
0.743105
0.744515
0.745033
0.745926

r=4.00

0.000423
0.001005
0.021057
0.047613
0.082881
0.098174
0.111944
0.117092
0.121541
0.123180
0.124590
0.125108
0.126000

N G

196

o

given by equation (22). For radii equal to 0-

roe 10

0.106439
0.128573
0.146708
0.162280
0.219495
0.288571
0.331665
0.361944
0.384714
0.448652
0.499803
0.548510
0.592155
0.608445
0.622519
0.627700
0.632160
0.633799
0.635209
0.635728
0.636620

r=280

0.000340
0.004760
0.023344
0.035858
0.048705
0.053750
0.058168
0.059803
0.061213
0.061731
0.062623
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Table 4. Number of terms on series of equation (21) to obtain 3 and 8 significant figure accuracy

Time r=20 r=1 r=2
3 sign. f. 8 sign. f. 3 sign. f. 8 sign. f. 3 sign. f. 8 sign. f.
0.01 65 <75
0.05 49 60
0.1 9 16 25 34 63 75
0.2 5 11
1 2 7 4 9 8 14

10 2 5 2 6

100 2 3

significant figure accuracy. Also the number of ad-
ditional terms required to go from 3 to 8 significant
figures is not large. The series solution, however, is not
appropriate for very small dimensionless times. The
limiting appropriate dimensionless times are about
0.01,0.05 and 0.1 for r = 0, 1 and 2, respectively. For r
> 1 a convenient limiting time expression is

t/r? > 0.05. 23)
Below this time the number of terms becomes ever
larger and the series does not always converge to the
correct value using the CDC 6600 with 14 significant
figure accuracy. Double precision does not seem to
help significantly. Since ¢/r? is smaller than 0.05 for
some of the possible entries in Table 3 and convergence
may not have been obtained, some values on the upper
right are omitted.

Temperatures for r = 0, 0.25, 0.5, 0.75, 0.9 and 1.0
are given in Table 2 and are plotted in Fig. 2. For the
small ¢ values at r = 0, temperatures were calculated
utilizing (6a). The r = 1 curve for small ¢t was found

using
t 1/2 9[2
T(1,0,t) ~ (;) (1 + g + —) (24)

96
which is accurate to 5 significant figures for ¢t < 0.1.
This expression was derived using a quite different
procedure and so will not be discussed further here.
For very small ¢ values (about 10~ %) the T given by
(24) is one-half the center value given by (6).
Except for the r values equal to and less than 1.25,

t
2n

t

/".’;LQ&Of

o 100 1t 10t 1o

00

oY o 1 j

FIG. 2. Local temperature vs time at z = 0.

Tables 2 and 3 provide values of T that give a fairly
complete set of curves as shown by Fig. 2. The
temperatures for r < 1 respond immediately to the
onset of heating but there is a lag for r > 1 that
increases with r.

For large radii the disk heat source behaves as if it
were a point source which has a solution of

T, t) = zl—rerfc[r/(Zt”z)]. (25)

For steady state (25) gives for r = 8 the value 0f 0.0625
while the Table 3 value is 0.062623 which is 0.2%,
higher. For larger r the error in using (25) is less but the
percent error for a given r tends to become larger as ¢ is
reduced.

AVERAGE TEMPERATURE

The temperature averaged over position is of in-
terest for determining the contact conductance and
other purposes. For the average temperature between
r = 0 and r = ¢ (a dimensionless arbitrary radial
location) one can multiply T(r, 0, t) by 2ardr, integrate
from r = 0 to ¢ and divide by nc?. The result is

T 0,t) = T(c, 0, ) — L(c, 1)

(26)

where I,(c, t) is exactly the same expression as given by
(18) except the inner summation has kj in the de-
nominator instead of simply k and in (20b), r is
replaced by ¢. The term T'(c,0, o0)in (26)for0 < c < 1
is given by (see [11] for annular heating)

(27a)
andforl1 < ¢ <
T(c, 0, o)
= —3%[(1+c2)E(c”‘) +(1 —HK(c™ ] (27b)

Atc =0,T©0,0,00) = landatc = 1, T(1,0, o0) =
8/3n. For large ¢ values (27b) can be approximated by

1 1 ]
. (270)

_ 1
T(c, 0, -l -5 - —
(€0, «0) c[ 8?  64c*
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An expanded form of (26) for a few terms is

— - 1
T(C, O’ [) = T(C' Os f‘) — N
2\/7'[1

: 1+¢? N 1 4302 .
> [, I L2
2 Tagop I

1
— ﬁg“z;j(l +6C2+6C4+('6) + .. ]

(28)

The coefficients of ¢*" are given in Table 5 in a similar
manner as Table 1 gives the coefficients for (18). Unlike
the coefficients given in Table 1, those in Table 5
display a symmetry for a given k value. The sum given
in Table 5 is the sum of the coefficients for a given k
value and can be used for ¢ = 1.

Tables 6 and 7 provide values for T(r, 0, t) for
specific r and 1. Fewer terms in the series given by (28)
areneeded than are given in Table 4. The r = 0 average
value is the same as the local value. For small ¢ the

JAMES V. Bick

average temperature from » = 0 to 1 can be approxi-
mated by [8]

~ T S At LAt
7(1,(),r):2(7) — 2 —
Y A4 (4) lg) |

29

which is accurate to 5 significant digits for 0 < 1 < 0.1.
Again in Table 7 as in Table 3 certain T values on the
upper right are omitted due to possible non-
convergence.

The average temperatures of Tables 6 and 7 are
plotted in Fig. 3. The curve of T for small r and for r >
I shown in Fig. 3 can be obtained by using

_ 2 /A
T(c,0,0) x - ) : (30)

Al
This expression becomes more accurateas t — O and as
¢ becomes larger. For ¢ = 1.5 and r = 0.2 it gives a
number that is 5%, too large but for ¢ = 8and 1 = 4 the
value given by (30) is only 0.2% large.
A comparison of Figs 2 and 3 shows that they have
the same general shape but the average curves start to

Table S. Coefficients of ¢?” for the average temperature expression given by equation (28)

k Sum n=0 n=1 n=2 n=3 n=4 n=35 n=6 n="7
0 1 f

1 2 1 1

2 S 1 3 1

3 14 1 6 6 t

4 42 1 10 20 10 1

5 132 1 15 50 50 15 1

6 429 1 21 105 175 105 21 I

7 1430 i 28 490 490 1

196

Table 6. Values of average dimensionless temperatures for series solution given by equation (26). For radii equal to 0-1

c=025

¢=0.50

¢c=09

c=10

Time, ¢ ¢=0.0 ¢=0.75
0.04 0.225647 0.225579 0.224952 0.220961 0.212710 0.200340
0.06 0.276003 0.275631 0.273607 0.265885 0.253896 0.238489
0.08 0.317551 0.316679 0.312874 0.301553 0.286491 0.268745
0.10 0.352882 0.351438 0.345798 0.331232 0.313611 0.293981
0.20 0.473895 0.470087 0.457473 0.431853 0.406122 0.380695
0.40 0.595213 0.589350 0.570812 0.536092 (.503790 0.473675
0.60 0.659147 0.652506 0.631706 0.593446 0.558534 0.526521
0.80 0.700063 0.693039 0.671121 0.631088 0.594845 0.561854
1.00 0.729097 0.721854 .699291 0.658225 0.621200 0.587630
2.00 0.804583 0.796949 0.773229 0.730289 (0.691826 0.657178
4.00 0.860404 0.852617 0.828444 0.784759 0.745716 0.710628
10.00 0911164 0.903312 0.878943 0.834933 0.795636 0.760354
40.00 0955443 0.947571 0.923142 0.879034 0.839658 0.804316
100.00 0.971802 0.963928 0.939493 0.895373 0.855989 0.820640
400.00 0.985897 0.978022 0.953585 0.909462 0.870075 0.834725
1000.00 0.991080 0.983205 0.958767 0.914644 0.875257 0.839906
4000.00 0.995540 0.987665 0.963227 0919104 0.879717 0.844366
10 000.00 0.997179 0.989304 0.964867 0.920743 0.881356 0.846005
40 000.00 0.998590 0.990715 0.966277 0922154 0.882767 0.847416
100 000.00 0.999108 0.991233 0.966795 0.922672 0.883285 0.847934
1.000000 0.992125 0.967688 0.923564 0.884177 0.848826

Infinity
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Table 7. Values of average dimensionless temperatures for series solutions given by equation (26). For radii equal to 1.25-8

Time, ¢ c=1.25 ¢=1.50 ¢=2.00 ¢=4.00 c=80
0.10 0.216281
0.20 0.288068 0.214035 0.125371
0.40 0.368792 0.282596 0.172899
0.60 0416518 0.324954 0.204969
0.80 0.449158 0.354670 0.228736
1.00 0.473315 0.377034 0.247300 0.070295
2.00 0.539805 0.440036 0.302517 0.097076
4.00 0.591984 0.490716 0.349646 0.127344 0.035189
6.00 0.616242 0.514565 0.372493 0.144682 0.042764
8.00 0.630979 0.529125 0.386615 0.156231 0.048742
10.00 0.641141 0.539191 0.396444 0.164621 0.053613
40.00 0.684925 0.582760 0.439471 0.204201 0.082941
100.00 0.701230 0.599042 0.455693 0.220020 0.097285
400.00 0.715309 0.613113 0.469746 0.233951 0.110745
1000.00 0.720490 0.618294 0.474925 0.239117 0.115859
4000.00 0.724950 0.622753 0.479384 0.243572 0.120298
10 000.00 0.726589 0.624392 0.481023 0.245211 0.121935
40 000.00 0.727999 0.625802 0.482433 0.246621 0.123345
100 000.00 0.728518 0.626321 0.482952 0.247139 0.123863
Infinity 0.729410 0.627213 0.483843 0.248031 0.124755
rise sooner and reach larger steady state values. This is 1t ,
true for all curves except for ¢ = r = 0 for which the T(. 2, 1) = 2 J‘ (r)™ 127140
curves are identical. 0
o (_ 1)1
CASE OF z GREATER THAN ZERO x ) D{r)do.  (33)

Some of the very important regions of z > 0 can be
treated utilizing a similar procedure to that given
above for z = 0. A convenient starting expression is

T(r,z,t) = f (1:0)'”26_’2/46

0
XJ e % J,(ir) (MdAde. (1)
0

This dimensionless expression can be derived from
equation (9) of p. 260 of [6]. By using (13) for the
product of the Bessel functions and employing the
typical integral of

© i
—022 12i .
e QM d) = —

o 201+1

(32)

one can derive

T T " v T T T T

T(c,0,t)

00 ot bt
ot oY o 1, 10 100 10 1o 1o

FIG. 3. Average temperature vs time at z = 0.

HMT 24:1 - K

i=0

A typical integral of (33) is

t de 2 2i+1 1 ZZ
—z2/40 .
€ - =|- r == 34
L gtz (z) (l * 2 4t> (34)

where z is not permitted to be zero. As a consequence,
this procedure cannot be used for z = 0. Now using (34)
in (33) produces

1/2 Z

— 1),1'

2|+1
« pr(i+ L7 (35)
i\ i A AL
2 4t

the first few terms of which are
142r* (3 22
L2t (3 2
2z 2 4t

1 122
T(r, z, [) = m—l/z{r<§, Z) —

+ 1+6r2+3r4l_ 5 z? 16
6z* ya) ) 9
By taking advantage of some relations for the

incomplete gamma function, I'(i + 1/2, x2), the T

expression given by (35) can be written in terms of

more familiar functions. Let

TG + 1/2,x%) = TG + 1/2)[1 —

T(r, z t)=

Vioi(x)] (37)
where V;_,(x) is defined herein to make (37) true. It is
V_i(x) = erf(x) and

Vicix) =Y Wix),i=0,1,2,....

=i

(38a)

where W (x) is defined to be
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x=0.1 x=0.5

i—1
0 0.081110
i 0.29876E-5 0.78767F-2
2 0.85306E-% 0.55352E-3
3 0.1895E-10 0.30434E-4
4 0.13735E-5
5 0.52549E-7
6 0.17446E-8
10
20
30
40
4 L+ Ddx
Wi = —xe s U MEEY )
NE: (2j + 2)!
forj=0,1,2...and W_,(x) = 0.
The recursion relation
\.Z
Wiiilx) = 7 —5 (x),j=0/1,2.3...(38¢)

can be used to provide an efficient method of evalu-
ation of the terms in (38a). Notice that V;_ (x)in (37)
goes to zero for any x provided i is sufficiently large (see
(38a) and (38c)). This results in reducing the number of
terms needed for transient solutions given by (35).
The gamma function ['(i + 1°2) can be written as
( i)

I'i+1/72)= ')\/

(39

Then introducing (37) and (39) into (35) yields
1 — 1)(21
(L)"

D,-(r){l - Vi, ( thlzﬂ (40)

Notice that (40) provides a steady state and a transient
part. The former is

1 — 1y(2i)!
Tz ry= - v )(2 ) Dy (41a)
2z =% (2z)%
1 . 142 21 + 612 {—773;"‘)
2z (2z)? (2z)*
S 12 18t ) 1)
(22)°

This expression yields accurate values for T provided
2z » rand 2z » |

which means in actual practice that z > 2.5for O <r < 1
and z > 2.5r for r > 1.

The number of transient terms caused by
V- (z/2t'%) is not as large as one might expect,
particularly for small values of z/2¢* * (see Table 8). Not
only do the coefficients of V;_ ,(-) decrease as shown by
(41b) but V;_(-) always goes to zero with increasing i
values, i.e. increasing number of terms for the sum-

Table 8. V', ,(x) values for x and i values

v = Ve od

100000

0.15085 0.84376 1.99999
0.04016 0.66741 (1.9999¢
0.00853 0.46585 (L99YRO
0.00150 0.28670 (,99924
0.00023 0.15640 1.99760
0.00003 0.07622 1199356
0.29E-K 000163 1).899%4
0.8E-9 010895

0.00040

TR

mation in (40). For example, for z.2:' * less than 0.5
and 2 the number of terms is respectively less than 6
and 20 to obtain 8 significant figures in the transient
term.

OTHER CASES

The geometry discussed herein is a basic building
block that can be utilized to provide the solutions for
many related geometries. These include various heat-
ing conditions, geometries and boundary conditions.
Beck [ 8] discusses a number of these but even more are
possible for the local temperature distribution than for
the average that is discussed in [8]. For example,
annular heating from r = «, to u, can be treated by
subtracting the solution for ¢ = a, from that obtained
for ¢ = a,. (Care must be taken to include all the
dependences on a; and «,.) For an arbitrary heat flux
q(r) the local temperature rise is
T(r.0. 1) = f Vg A=,

o a

142}
where the maximum radius of non-zero ¢(r} is r,,, and
where r is a dummy variable. In (42) each quantity has
units, that is, it is not in dimensionless form. The
dimensional temperature T'(r, z. 1) for a constant heat
flux ¢ of unity is denoted ¢ir, «, =, 1).

A further use of the solution contained herein s for
the transient contact conductance for a regular distri-
bution of contacts. This can be accomplished by
extending the results of [10].

CONCLUSIONS

A new series solution is given for the transient
temperatures in a semi-infinite solid heated over a
circular area. The solution at the surface takes advan-
tage of a known steady state solution. By concentrat-
ing on ‘large’ times it is found possible to obtain results
even down to the small dimensionless times of 0.01.
This procedure utilizing the steady state may be
effective in other related problems.

The problem is a basic one and the solution can be
used as a building block in a number of other
geometries and boundary conditions, some of which
are mentioned. It is also a fundamental solution for use
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in connection with a new solution method called the
surface element method. This method is competitive
with the finite difference and element methods when
unlike geometries are attached such as a rod and a
semi-infinite solid.
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SOLUTION, POUR LES GRANDES ECHELLES DE TEMPS, DE LA TEMPERATURE
DANS UN MILIEU SEMI-INFINI AVEC UNE SOURCE DE
CHALEUR CIRCULAIRE

Résume—On présente une solution série pour 'histoire de la température locale de surface d’un milieu semi-
infini chauffé seulement sur une aire circulaire. Dans cette région le flux thermique est constant dans le temps
et uniforme, tandis qu’en dehors de cette aire la surface est isolée. Un certain nombre de solutions approchées
est donné dans la littérature. Une solution exacte est connue mais elle se présente sous la forme d’une
intégrale avec un domaine infini. La solution développée ici est plus pratique pour tous les temps sans
dimension a P’exception des plus petits. On fournit des courbes et des tables.

En plus de la solution pour la surface, on donne une solution pour certains points a I'intérieur mais aussi

pour les époques “lointaines”.

La solution est importante parce qu'elle est fondamentale dans la conduction thermique et elle est
fréquemment utilisée pour les corps cylindriques. La solution peut étre employée pour les geométries finies,
pour des chauffages variables dans le temps et dans le cas de flux thermiques variant spatialement de facon
symétrique. Elle peut aussi étre utilisée dans une nouvelle méthode prometteuse et qui est appellée la méthode

des ¢éléments de surface.

LANGZEITLOSUNGEN FUR DIE TEMPERATUR IN EINEM
HALBUNENDLICHEN KORPER MIT EINER WARMEQUELLE IN FORM
EINER KREISFLACHE

Zusammenfassung — Die Arbeit gibt eine Losung fiir den értlichen und zeitlichen Temperaturverlauf an der
Oberfliiche eines halbunendlichen K 6rpers an, der ausschlieBlich iiber ein kreisformiges Gebiet beheizt wird.
Innerhalb dieses Gebiets ist der Wérmestrom zeitlich und ortlich konstant, wihrend die Oberfliche
auBerhalb der Kreisfliche isoliert ist. Aus der Literatur sind hierfiir eine Anzahl von Niherungsidsungen
bekannt. Es existiert auch eine exakte Losung, aber sie hat die Form eines unendlichen Integrals. Die hier
entwickelte Losung ist fiir alle dimensionslosen Zeiten — ausgenommen die kleinsten — sehr viel bequemer
anzuwenden. Ausfihrliche Diagramme und Tabellen werden angegeben.

Zusiitzlich zur Losung fiir die Oberfliche gibt es eine Lésung fiir bestimmte Orte innerhalb des Korpers

ebenfalls fiir “groBe” Zeiten.

Die Losung ist wichtig, weil sie eine grundlegende Geometrie der Wirmeleitung betrifft und haufig im
Zusammenhang mit zylindrischen Korpern gebraucht wird. Sie kann als Baustein fiir verwandte finite
Geometrieen bei zeitabhéingiger Erwirmung und symmetrischen rdumlich verinderlichen Wirmestrémen
benutzt werden. Die Losung kann ebenfalls innerhalb einer vielversprechenden neuen Berechnungsmethode,

der sogenannten Oberflichen-Element-Methode, verwendet werden.
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TEMITEPATYPHOE [TOJIE ITPHU BOJIBIIMX BPEMEHAX B INOJIYBECKOHEYHOM
TEJE C UICTOYHHUKOM TEIIJIA B ®OPME JUCKA

Annotrauns - [lpeAcTaBieHo pelleHHe B BU/IE PSla /LIS JIOKAIbHOIO MU3MEHEHHS BO BPEMEHH TeMie-
PaTyphbl MOBEPXHOCTH NO:1yOECKOHEYHOrO TeEila, HArPEBaeMOro Mo kpyrosoi obaactu. Buytpu sroit
061acTH Tenn0BOH NOTOK SBJISETCS CTAlIHOHADHBIM H OJHOPOAHBIM, B TO BPEMS Kak CHAPYXH OBEpX-
HOCTb M30j1MpoBaHa. [lns [MaHHOro ciiyyas B IHTepaType MMeeTCs psil [PHOIMKEHHbIX pelleHHH M
0/IHO TOYHOE pellleHHE. HO B BHJE MHTErpasla ¢ DeCKOHeYHO# obiacTsio. [peataraemoe B padore peiue-
HHE SBIRETCR ropa3fo fosnee y100HBIM. KOT/1d HCIIOABIYIOTCH Be3pa3MepHbie BPEMEHA 34 HCKAIOUEHHEM
HauMeHbLIMX. [TpHBEICHBI TakKe MHOIOYMC/ICHHbIE KPUBBIE H TAOIHLBI.

[ToMuMO petileHHs L1si MOBEPXHOCTH /GHO DEILEHHE /LT HEKOTOpPbIX obaacteil BHYTpH noaydec-
KOHEYHOrO Tena ¥ TOXe /Lis «DOosbUINX» 3HAYCHHH BPEMEHH.

[MpeiviaraemMoe pelIeHHe UMEET BAXKHOE 3HAUEHHE B CBA3H ¢ T€M. YTO PACCMATPHBAEMAs FCOMETPUS
SBJISIETC OCHOBHOM B 33a4ax TCIUIONPOBO/IHOCTH Te! NHIHHAPHYeCKOH GopMbl. OHO MOXET HCMONb-
30BaThCS KAK COCTABHAN 4aCTb MPH PELUCHHH 34.1d4 /115 KOHeYHBIX TEOMETPHil NPH HECTALIHOHAPHOM
Harpese H 11PH PaccCMOTPEHHH CUMMETPHYHbIX C/1y4deB ¢ HEPABHOMEPHBIM TEIL10BbIM n0TOKOM. Kpome
TOro. €10 MOXHO HCHO.TB30BATHL B HOBOM TIEPCIHEKTHBHOM MeTO/I€ PACYETA. HA3ZBIBACMOM METOIOM

HIeMeHTAPHON TTOILA AKH.



