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Abstract - This paper presents a series solution for the local surface temperature history for a semi-infinite 
body heated only over a circular region. Inside this region the heat flux is constant with time and position 
while outside the circular area the surface is insulated. A number of approximate solutions are available in the 
literature. One exact solution is available but it is in the form of an integral with an infinite domain. The 
solution developed herein is much more convenient to use for all dimensionless times except the smallest. 
Extensive curves and tables are provided also. 

In addition to the surface solution there is a solution for certain interior locations also for ‘large’ times. 
The solution is important because it is a basic geometry in heat conduction and is frequently needed in 

connection with cylindrical bodies. The solution can be utilized as a building block for related finite 
geometries for time-variable heating and for symmetric spatially-varying heat flux cases. It can also be used in 

a promising new calculation method that is called the surface element method. 
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NOMENCLATURE 

radius of heated area; 
radius of region for average temperature; 
coefficient defined by equation (19) ; 
specific heat ; 
function defined by equation (14a) ; 
complete elliptic integral of the second 
kind ; 
function given by equation (18) ; 
thermal conductivity; 
complete elliptic integral of the first kind; 
Bessel function of the first kind; 
heat flux ; 
radial coordinate ; 
time ; 
temperature; 
function given by equation (20); 
function given by equation (38a); 
function given by equation (38b); 
axial coordinate ; 
thermal diffusivity ; 
Gamma function; 
incomplete Gamma function; 
density. 

INTRODUCTION 

THE CASE of a semi-infinite solid heated by a disk heat 
source is a basic building block in transient heat 
conduction. Though many analyses have been made 
no exact solution has been previously developed that is 
valid for all times and locations within the body and 
that can be conveniently evaluated. Only for the 
centerline is there a convenient exact transient solution 
available. This paper provides an exact series solution 
for any surface location and for all times except for the 

smallest. Another solution is included that is valid for 
some interior locations and for ‘large’ times. 

Some of the pioneering solutions were employed for 
analysis of electric contacts and sliding contacts; see 
the book by Holm and Holm [l]. Oosterkamp [2] was 
interested in heat dissipation at the anode of an X-ray 
tube. More recently Yovanovich and co-workers 
[3-51 presented results motivated by the contact 
conductance problem. None of these papers provided 
an exact solution for the transient temperature distri- 
bution. An exact solution is known, however; it is in 
Carslaw and Jaeger [6] and is attributed to Ooster- 
kamp. It provided a starting point for some of the work 
in this paper. It is in the form of an integral with limits 
of zero and infinity and has an integrand involving 
error and Bessel functions. The integral is difficult to 
accurately evaluate using a numerical procedure be- 
cause the domain is infinite and because of the 
sinusoidal nature of the Bessel functions. Though this 
integral presents a solution valid for any radius and 
depth, accurate values are dif5cult to obtain except 
along the centerline. 

Thomas [7] gave an exact solution in terms of 
tabulated functions for the steady state at the heated 
surface. Analytical expressions were presented by Beck 
[8] for the average transient temperature over the 
radial region from the center to the heated region 
radius. Any depth in the body was considered. Closed 
form series expressions were given and some extremely 
accurate approximations were provided. Local tem- 
peratures at any position in the body were not covered, 
however. 

Two of the main purposes of this paper are to 
provide series expression valid for (1) any radial 
location at the heated surface and (2) certain internal 
locations. Solutions are derived for ‘large’ times which 
also converge for relatively small times such as at/u2 2 
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,/’ 
‘\--Semi-infinite 

homogeneous body 

Fir;. 1. Semi-intin~te body heated over a disk-shaped region 
centered at r = 0 and z = 0 and insulated elsewhere at z = 0. 

0.04 for r < a where a is the radius of the disk source. A 
solution is also presented for the average temperature 
from the centerline to any radial location. It is further 
shown how the solution can be used to generate a 
solution for an arbitrary-in-r heat flux. 

GEOMETRY AND MATHEMATICAL DESCRIPTION 

The geometry and coordinates are shown in Fig. 1. 
The body is isotropic, homogeneous and semi-infinite; 
it is conveniently described using the cylindrical 
coordinates r and Z. The surface is insulated except 
over the circular region from r = 0 to a where there is a 
constant heat flux q. 

A mathematical statement of the problem is the 
solution of 

(lb) 

T(r, Z, t) -+ 0 for r -+ Y- and z + K (Ic) 

T(r, z, 0) = 0. fld) 

With the initial temperature being zero, the symbol T 
can be interpreted as the temperature rise. The proper- 
ties k, p and cP are assumed to be independent of 
temperature and position. 

AVAILABLE SOLUTIONS 

The exact solution given by Carslaw and Jaeger ([6], 
p. 264) is 

This expression is valid for all r and z values equal to 
and greater than zero. At z = 0, the location of primary 
interest, this expression reduces to 

which is difficult to evaluate numerically as mentioned 
above, For convenience, the above equations can be 
written in dimensionless form, Define 

Then (2b) can be written (with the pluses dropped) as 

and (2a) can be similarly written. 
At the centerline (r = 0) Carsiaw and Jaeger [6] 

present for any z the convenient dimensionless so- 
lution of 

For the heated surface (Z = 0) and at r = 0, this 
equation yields 

1’(0, 0, t) = 2t’:2 [-& - ierfci2ii:T)/ 

= erfc[&j + 2[:)’ ‘11 -‘e-I:*‘] (6aI 

which for small t values can be approximated by 

T(O,O, t) 2 2 
0; 

d ’ 2[1 - tt(l - 6t + 60tZ)e-“q’]. 

Wf 

For t values less than 0.02, and to 6 decimal places (6b) 
can be given simply by 2(t/n)“*; this is the same 
expression as for the surface temperature of a semi- 
infinite body that is uniformly heated. 

Thomas [7] derived an exact steady state solution 
for the surface temperature in terms of known func- 
tions, He gave for 0 < Y < 1, 

2 
T(r, 0, x ) = E(r) (7) 

77 

and for r > 1 

T(r, 0, TX) = q[E(F’) - (1 - r -L)#{r ‘)I. @a) 

At r = 1, T(l, 0, x,) = 2/a. For ‘large’ r @a) can be 
approximated by 

1 3 
7 + ii%-+ e . . 
2(2r1 

(8b) 

The leading term of (8b) is l/Zr which is the same as 
given by a point heat source. The functions K(.) and 
E(.) are the complete elliptic integrals of the frrst and 
second kinds, 
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s n/2 

K(E) = [l - &2 sin’ 13]- li2 de (9a) 
0 

E(E) = 
s 

42 

[l - s2 sin’ e]“’ de. (9b) 
0 

These functions are tabulated in [9] and are available 
in computer libraries. This convenient exact solution 
for the steady state is utilized in the exact series 
solution developed below for the transient case. 

SERIES SOLUTION 

By using the relation between erfc(.) and erf(.), (4) 
can be given by 

T(r, 0, t) = 
s 

m J0WJ 10.) d) 

0 3. * 

r m 

- erfc(Rt1’2) J0W!Ji(R) d3,. (lo) 

Jo 1. 

Notice that the first integral is a steady state term and 
the second term goes to zero as t -+ m. Hence, the first 
integral is equal to either (7) or (8a) depending on the 
range of r. 

Consider now the second integral in (10). The 
function erfc( .) has very small values for the argument 
greater than about 4. Hence, for evaluating the in- 
tegral, only 3, values less than 4t-i12 need be con- 
sidered. For ‘large’ t values this means that small J’s are 
of interest. Consequently, the defining series ex- 
pressions for Jo and Jr can be effectively used ; the first 
few terms of each are 

J Or) = 1 
(A# 

0 * 
w2 ; (W4 -- 

4 42(2!)2 
- + . ..(n) 
43(3 !)2 

(12) 

The product of these two functions when the 3. 
coefficients are collected is 

J,(h)J,(R) = f (- 1)‘(I./2)2’+1 D,(r) (13) 
i=O 

where D,(r) is 

i+l 

[ 

$-I 

1 

2 
D,(r) = 1 (i-j+2) 

j=l (j-l)!(i-j+2)! (14a) 

where i = 0, 1,2,. . . . The first few values of D,(r) are 

1+2r2 
D,(r) = 1, D,(r) = 2, D,(r) = 

1 + 6T2+ 3r4 (14b) 

D,(r) = 
1 + 12r2 + 18r4 + 4r6 

144 (14c) 

By using the integral relation for erfc( .), the second 
integral in (10) can be written as 

m m 

=$ ,“’ ss o e -‘w [J,(Rr)J,(J~)]dRdv (15) 

where the substitution u = 3,~ is used and the order of 
integration is interchanged. Note that 

s 

‘x 1 i! e-“Zuz).2i+i dl, = _~, 
22i+2 

(16) 
0 

Introducing (13) into (15), using (16) and then 
integrating over u produces the expression for (15) of 

(- l)‘i! 

I2 = 2Jnt i=. (2i + 1)(4t)’ 
J-f D,(r). (17) 

A much more convenient form for computer (or 
programmable calculator) evaluation is 

I, = - u: (18) 

where 

C, = 4k(2k + l)[(k + l)!] 

u,, = 1 

(19) 

(20a) 

ukj = Uk,j-l 

(k-j+2)r 

j-l 
; k=l, 2, . . . . 

j=2, 3, . . ..k (2Ob) 

where (20b) is a recursion relation. 
In summary for 0 < r < 1, a series expression for T 

at z = 0 is 

T(r, 0, t) = 1 E(r) - I,@, t) (21) 

where the functional dependence of I, is noted. For r 
> 1, replace (2/n)E(r) by (8a). The I,(r, t) function is 
calculated using (18)-(20). These exact expressions are 
very efficient for ‘large’ times because the infinite 
summation in I2 can be approximated with just a few 
terms. 

In order to display clearly the nature of the sum- 
mation in I,, several terms are now given, 

1 
T(r, 0, t) = T(r, 0, ~0) - ~ 

2Jnt 

1 - 1 + &(l+6r2+3r4) 
24t 

-L(1+12r2+18r4+4r6) + . . . 
10752tJ 

.(22) 

Note that the denominators 24, 480, etc. are the Ck 
values given by (19). A more extensive set of values Ck 
and of the coefficients of r2” are given in Table 1. 

Typical results for the local dimensionless tempera- 
ture are given for various r and t values in Tables 2 and 
3. The dimensionless times start at 0.04 and go to 
infinity. The number of terms required in the series 
increases quite rapidly as the dimensionless times 
become small, as shown in Table 4. Fortunately for a 
large range oft, the required number of terms is quite 
modest, e.g. less than 7 for r = 0 for t > 1 to obtain 8 
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Table 1. Coefficients of terms in equations (18) and (22) 

(‘a 

I 
24 

480 
10 752 

276 480 
8 110080 

268 369 920 
9909043200 

?I=0 

I 
I 
I 
I 
I 
1 
1 
1 

C’oefficients of r”’ 
,I = I ,I 7 =- I, 3 =- 12 4 = ii i ,I 1b ._ 

1 
b 3 

I? 18 4 
20 60 40 5 
30 1 50 300 75 6 
41 315 700 525 136 - 
56 5X8 I960 2450 1176 I96 x 

Table 2. Values of local dimensionless temperatures for series solution given by equation (22). l-or radii equal to 0 

Time, t r = 0.0 r = 0.25 
__-___ ~~~~ ~_~~ _~~~~~~ ~~ 

0.04 0.225647 0.225487 
0.06 0.276003 0.275194 
0.08 0.317551 0.315717 
0.10 0.352882 0.34989 I 
0.20 0.473895 0.466184 
0.40 0.595213 0.583412 
0.60 0.659147 0.645795 
0.80 0.700063 0.685949 
1.00 0.729097 0.714546 
2.00 0.804583 0.78925 1 
4.00 0.860404 0.844767 

10.00 0.911164 0.895396 
40.00 0.955443 0.939636 

100.00 0.971802 0.955991 
400.00 0.985897 0.970084 

1000.00 0.991080 0.975267 
4000.00 0.995540 0.979727 

10 000.00 0.997179 0.981366 
40 000.00 0.998590 0.982776 

100 000.00 0.999 108 0.983295 
Infinity l.CWOOO 0.984187 

r = 0.50 )_ = 0.75 I’=09 r: l.(i 

0.223512 0.208596 0.174404 0.106439 
0.269833 0.24559 I 0.202785 0.12x573 
0.306483 0.274376 0.225293 0.146708 
0.336874 0.298166 0.244201 0.162280 
0.439395 0.379665 0.311190 0.219495 
0.545075 0.468351 0.388229 0.28857 1 
0.603023 0.519584 0.434689 0.331665 
0.640975 0.554129 0.466752 0.361944 
0.668298 0.579454 0.490599 0.384714 
0.740710 0.648203 0.556583 0.448652 
0.795324 0.701345 0.608589 0.499803 
0.845562 0.750939 0.657679 0.5485 to 
0.889682 0.79486 1 0.701444 0.592155 
0.906024 0.811181 0.7 17747 0.608445 
0.920113 0.825264 0.731825 0.622519 
0.925295 0.830446 0.737006 0.627700 
0.929755 ox34905 0 741465 0.632160 
0.931395 0.836544 0.743 105 0.633799 
0.932805 0.837955 0.744515 0.635209 
0.933323 0.838473 0.745033 0.635728 
0.934215 0.839365 0 745926 0.636621) 

Table 3. Values of local dimensionless temperatures for series solution given by equation (22). kor radii equal to 1.15 G? 

Time, t r= 1.25 r= 1.50 r= 2.00 r -= 4.00 r -= 8.1) 

0.08 0.029169 
0.10 0.037316 0.00949(1 
0.20 0.072147 0.027664 0.003456 
0.40 0.121933 0.060794 0.014967 
0.60 0.156405 0.087005 0.027959 
0.80 0.181959 0.107766 0.040 I80 0.000423 
1.00 0.201817 0.124566 0.05 1148 0.001005 
4.00 0.308779 0.222454 0.129605 0.021057 0.000340 

10.00 0.356370 0.2687 18 0.172666 0.047613 0.004760 
40.00 0.399662 0.311585 0.214469 0.082881 0.023344 

100.00 0.415914 0.327789 0.230554 0.098 174 0.035858 
400.00 0.429976 0.341837 0.244566 0.111944 0.048705 

1000.00 0.435156 0.347015 0.249741 0.117092 0.053750 
4000.00 0.4396 15 0.351474 0.254198 0.121541 0.058168 

10 ooo.00 0.441254 0.353113 0.255837 0.123180 0.059803 
40 Oc0.00 0.442664 0.354523 0.257247 0.124590 0.061213 

100 OcO.00 0.443183 0.355042 0.257766 0.125108 0.061731 
Infinity 0.444075 0.355934 0.25865X 0.126000 0.062623 
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Table 4. Number of terms on series of equation (21) to obtain 3 and 8 significant figure accuracy 

Time r=O r=l r=2 

3 sign. f 8 sign. f. 3 sign. r. 8 sign. f. 3 sign. f. 8 sign. f. 

0.01 65 <I5 
0.05 49 60 
0.1 9 16 25 34 63 75 
0.2 5 11 

1 2 I 4 9 8 14 
10 2 5 2 6 

100 

significant figure accuracy. Also the number of ad- 
ditional terms required to go from 3 to 8 significant 
figures is not large. The series solution, however, is not 
appropriate for very small dimensionless times. The 
limiting appropriate dimensionless times are about 
0.01,0.05 and 0.1 for r = 0, 1 and 2, respectively. For r 
2 1 a convenient limiting time expression is 

tjr’ 2 0.05. (23) 

Below this time the number of terms becomes ever 
larger and the series does not always converge to the 
correct value using the CDC 6600 with 14 significant 
figure accuracy. Double precision does not seem to 
help significantly. Since t/r2 is smaller than 0.05 for 
some of the possible entries in Table 3 and convergence 
may not have been obtained, some values on the upper 
right are omitted. 

Temperatures for r = 0, 0.25, 0.5, 0.75,0.9 and 1.0 
are given in Table 2 and are plotted in Fig. 2. For the 
small t values at I = 0, temperatures were calculated 
utilizing (6a). The r = 1 curve for small t was found 
using 

T(l,O, t) z (;)‘;‘-;(I+;+$) (24) 

which is accurate to 5 significant figures for t < 0.1. 
This expression was derived using a quite different 
procedure and so will not be discussed further here. 
For very small t values (about 10d4) the T given by 
(24) is one-half the center value given by (6). 

Except for the r values equal to and less than 1.25, 

FIG. 2. Local temperature vs time at z = 0. 

2 3 

Tables 2 and 3 provide values of T that give a fairly 
complete set of curves as shown by Fig. 2. The 
temperatures for r < 1 respond immediately to the 
onset of heating but there is a lag for r > 1 that 
increases with r. 

For large radii the disk heat source behaves as if it 
were a point source which has a solution of 

T(r, t) = $ erfc[r/(2t’12)]. (25) 

For steady state (25) gives for r = 8 the value of 0.0625 
while the Table 3 value is 0.062623 which is 0.2% 
higher. For larger r the error in using (25) is less but the 
percent error for a given r tends to become larger as t is 
reduced. 

AVERAGE TEMPERATURE 

The temperature averaged over position is of in- 
terest for determining the contact conductance and 
other purposes. For the average temperature between 
r = 0 and r = c (a dimensionless arbitrary radial 
location) one can multiply T(r, 0, t) by 2nrdr, integrate 
from r = 0 to c and divide by zc’. The result is 

T(c, 0, t) = qc, 0, cc) - I;(c, t) (26) 

where I;(c, t) is exactly the same expression as given by 
(18) except the inner summation has kj in the de- 
nominator instead of simply k and in (20b), r is 

replaced by c. The term T(c, 0, co) in (26) for 0 < c 2 1 
is given by (see [llJ for annular heating) 

T(c, 0, co) = & [(l + c2)E(c) - (1 - c2)K(c)] 

(27a) 

and for 1 I c < co 

T(c, 0, co) 

= &[(l+c”)E(c-I) + (1 - c2)K(c-l)]. (27b) 

At c = 0, T(O, 0, a) = 1 and at c = 1, T(l,O, KI) = 
8/3a. For large c values (27b) can be approximated by 

T(c,O, m)z; I l-$2-&. 
1 

(27~) 
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An expanded form of (26) for a few terms is average temperature from r = 0 to 1 can be approxi- 

$(c, 0, t) = T’(c, 0, z ) - L 
2Jllt 

mated by [8] 

7:(1,&f) 2 

The coefficients of c2” are given in Table 5 in a similar 

manner as Table 1 gives the coefficients for (18). Unlike 
the coefficients given in Table 1, those in Table 5 

display a symmetry for a given k value. The sum given 
in Table 5 is the sum of the coefficients for a given k 

value and can be used for c = 1. 

Tables 6 and 7 provide values for T’(r, 0, r) for 
specific r and L Fewer terms in the series given by (28) 

are needed than are given in Table 4. The r = 0 average 
value is the same as the local value. For small t the 

which is accurate to 5 significant digits for 0 < r c: O. I. 
Again in Table 7 as in Table 3 certain T values on rhe 
upper right are omitted due to possible non- 
convergence. 

The average temperatures of Tables 6 and 7 arc 

plotted in Fig. 3. The curve of r for small I and for r ;a 
I shown in F‘ig. 3 can be obtained by using 

This expression becomes more accurate as t + U and as 

c becomes larger. For c = 1.5 and I = 0.2 it gives a 
number that is 57; too large but for C’ = 8 and I -= 4 the 

value given by (30) is only 0.24u large. 
A comparison of Figs 2 and 3 shows that they have 

the same general shape but the average curves start to 

Table 5. Coefficients of c2” for the average temperature expression given by equation (28) 
_ 

k Sum n=O n=l n=2 I, = 3 ,I = 4 n=5 r7=6 n:7 
-____-..._ _~ 

0 1 1 
I 2 I 1 

2 5 I 3 1 
3 14 I 6 6 I 
4 42 1 10 20 10 I 
5 132 1 15 50 50 15 1 

6 429 1 21 105 175 105 21 I 
7 1430 1 28 196 490 490 196 ?X 1 

Table 6. Values of average dimensionless temperatures for series solution given by equation (26). t-or radii equal to O--I 

Time, t c=o.o c=O.25 r=0.50 (‘= 0.75 c=o.9 (‘== 1.0 

0.04 0.225647 0.225579 0.224952 0.220961 0.212710 0.200340 

0.06 0.276003 0.27563 1 0.273607 0.265885 0.253896 0.238489 

0.08 0.317551 0.316679 0.312874 0.30 1553 0.286491 0.268745 

0.10 0.352882 0.351438 0.345798 0.331232 0.31361 1 0.293981 

0.20 0.473895 0.470087 0.457473 0.431853 0.406122 0.380695 

0.40 0.595213 0.589350 0.570812 0.536092 0.503790 0.473675 

0.60 0.659147 0.652506 0.63 1706 0.593446 0.558534 0.526521 

0.80 0.700063 0.693039 0.671121 0.63 1088 0.594845 0.561854 

1.00 0.729097 0.721854 0.699291 0.658225 0.62 1200 0.587630 

2.00 0.804583 0.796949 0.773229 0.730289 0.691826 0.65717X 

4.00 0.860404 0.852617 0.828444 0.784759 0.745716 0.710628 

10.00 0.911164 0.903312 0.878943 0.834933 0.795636 0.760354 

40.00 0.955443 0.94757 1 0.923142 0.X79034 0.839658 0.8043 16 

100.00 0.97 1802 0.96392X 0.939493 0.895373 0.855989 0.820640 

400.00 0.985897 0.978022 0.953585 0.909462 0.870075 0.834725 

lOGQ.00 0.99 1080 0.983205 0.958767 0.914644 0.875257 0 839906 

4000.00 0.995540 0.987665 0.963227 0.919104 0.879717 0.844366 

10 000.00 0.997179 0.989304 0.964867 0.920743 0.881356 0.846005 

40 000.00 0.998590 0.9907 15 0.966277 0.922 154 0.882767 0.847416 

100 000.00 0.999108 0.991233 0.966795 0.922672 0.883285 0.847934 

Infinity 1 .OONKKl 0.992125 0.967688 0.923564 0.884177 0.848826 
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Table 7. Values of average dimensionless temperatures for series solutions given by equation (26). For radii equal to 1.25-8 

Time, t c= 1.25 c= 1.50 c=2.00 c=4.00 c=8.0 

0.10 0.216281 
0.20 0.288068 
0.40 0.368792 
0.60 0.416518 
0.80 0.449158 
1.00 0.473315 
2.00 0.539805 
4.00 0.591984 
6.00 0.616242 

8.00 0.630979 
10.00 0.641141 
40.00 0.684925 

100.00 0.701230 
400.00 0.715309 

lOCO.00 0.720490 
4000.00 0.724950 

10 000.00 0.726589 
40 000.00 0.121999 

100 000.00 0.728518 
Infinity 0.729410 

0.214035 0.125371 
0.282596 0.172899 
0.324954 0.204969 
0.354670 0.228736 
0.377034 0.247300 
0.440036 0.302517 
0.490716 0.349646 
0.514565 0.372493 
0.529125 0.386615 
0.539191 0.396444 
0.582760 0.439471 
0.599042 0.455693 
0.613113 0.469746 
0.618294 0.474925 
0.622753 0.479384 
0.624392 0.481023 
0.625802 0.482433 
0.626321 0.482952 
0.627213 0.483843 

0.070295 
0.097076 
0.127344 
0.144682 
0.156231 
0.164621 
0.204201 
0.220020 
0.233951 
0.239117 
0.243572 
0.245211 
0.24662 1 
0.247139 
0.248031 

0.035189 
0.042764 
0.048742 
0.053613 
0.082941 
0.097285 
0.110745 
0.115859 
0.120298 
0.121935 
0.123345 
0.123863 
0.124755 

rise sooner and reach larger steady state values. This is 

true for all curves except for c = r = 0 for which the T(r, z, t) = t 
s 

’ (7cB)-112 e-Z214e 

curves are identical. 0 

CASE OF z GREATER THAN ZERO 
x f (- ‘Iii! Q(r)&’ 

iZO (48)’ . 
(33) 

_ 
Some of the very important regions of z > 0 can be 

treated utilizing a similar procedure to that given A typical integral of (33) is 

above for z = 0. A convenient starting expression is f 
e-r*/48 

T(r, z, t) = 

s 

’ (d)- l’* e-z’14e 
s 0 

2!L=(~>‘i+1,(i+~,%) (34) 
@+3/2 

0 where z is not permitted to be zero. As a consequence, 
this procedure cannot be used for z = 0. Now using (34) 

X 

s 
n e-“’ Jo(Rr)J,(3Jd3.dB. (31) in (33) produces 

0 

This dimensionless expression can be derived from 
equation (9) of p. 260 of [6]. By using (13) for the 

T(r, z, t) = 2Kl,2 1 i$o !I$! 

product of the Bessel functions and employing the 
typical integral of x Di(r)r (35) 

s cc 
i! 

e-ei’~*2i+l d], - 
(32) 

the first few terms of which are 
0 

28’+1 

one can derive T(r, z, t) = 

81 

t 
? 6 
0 
0’ I 
IG 4 

1+6r2+3r4 
+ 6z4 ~~;>~)-...]. (36) 

By taking advantage of some relations for the 

incomplete gamma function, T(i + l/2, x2), the T 
expression given by (35) can be written in terms of 
more familiar functions. Let 

r(i + 1/2,x*) = T(i + 1/2)[1 - Vi_,(x)] (37) 

where Vi_ 1(x) is defined herein to make (37) true. It is 
V_,(x) = erf(x) and 

Vi-l(X)= 2 Wj(x),i=0,1,2 ,.... (3ga) 
jzi 

FIG. 3. Average temperature vs time at z = 0. where Wj(x) is defined to be 
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0 0.0x1 I IO 
1 0.29876E-5 0.78767L-2 
2 O.X5306E-X O.S5352E-3 
3 O.l895E-10 0.30434E-4 
4 O.l3735E-5 
5 0.52549F.7 
6 0. I7446E-8 

10 
20 
30 
40 

for.j = 0, 1, 2 .__ and W_,(Z) = 0 
The recursion relation 

.X2 
Wj+l(.y) = .P~~~~~~ Wj(S),j = 0, 1, 2, 3 

,I + 1.5 

(38b) 

(38C) 

can be used to provide an efficient method of evalu- 
ation of the terms in (38a). Notice that Vi_,(x) in (37) 

goes to zero for any x provided i is sufficiently large (see 
(38a) and (38~)). This results in reducing the number of 

terms needed for transient solutions given by (35). 
The gamma function T(i + 1’2) can be written as 

r(; + 1 ‘2) = !.y ’ I 

4’(j!) t’X, 

Then introducing (37) and (39) into (35) yields 

’ (- 1)‘(2i)! 
T(r, z. f) = ii 1 

, (1 (2Z)“~ 

Notice that (40) provides a steady state and a transient 

part. The former is 

(4la) 

5(1 + 12r2 + 18r4 + 46) _ 

(2,,)h 
~~~ + _._ 

I 
(41b) 

This expression yields accurate values for 7‘ provided 

2: >> r and 2: >> 1 

which means in actual practice that ; > 2.5 for 0 < r < 1 
ands>2.5rforr> 1. 

The number of transient terms caused by 
Vi_ ,(~/2t”~) is not as large as one might expect, 
particularly for small values of ~/2t”~ (see Table 8). Not 
only do the coefficients of Vi _ 1 (.) decrease as shown by 
(41b) but Vi_ 1(.) always goes to zero with increasing i 
values, i.e. increasing number of terms for the sum- 

0.150x5 O.X337h 
0.040 I6 0 6674 I 
0.00853 0.4h585 
0.00 1 so 0.X67(1 
o.OOo?; 0.1 X14(1 
0.00003 0.07617 
0.2’) F-X 0.0016i 

O,XL’I 

mation m (40). For example, fog- : ?r’ ’ less Ihan 0.5 
and 2 the number of terms is rcspecti\ely less than 6 
and 20 to obtain 8 significant figures in the transient 
term. 

The geometry discussed hcretn ih B basic bulidlnp 

block that can be utilized to provide the solutions for 
many related geometries. These include various heat- 

ing conditions, geometries and boundary conditlonb. 
Beck [8] discusses a number of these but even more arc 
possible for the local temperature distribution than for 

the average that is discussed in [8). For example. 
annular heating from r = o1 to u2 can be treated by 

subtracting the solution for tl = (j2 from that obtained 
for u -= (1,. (Care must be taken to include all the 

dependences on a, and u2.) For an arbitrary heat flux 
q(r) the local temperature rise i\ 

T(r. 0. r) = 

where the maximum radius of norl-zero q(r) is I’,,,,, and 
where r’ is a dummy variable. In (42) each quantity has 

units, that is, it is not in dimensionless form. The 

dimensional temperature 7’(r. J. I) for a constant heat 

flux y of unity is denoted &r. L,, :. r). 
A further use of the solution contained herem I> for 

the transient contact conductance for a regular distri- 
bution of contacts. This can be accomplished by 

extending the results of [IO 1. 

A new series solution is gilen for the transient 
temperatures in a semi-infinite solid heated over a 
circular area. The solution at the surface takes advan- 
tage of a known steady state solution. By concentrat- 
ing on ‘large’times it is found possible to obtain results 
even down to the small dimensionless times of 0.01. 
This procedure utilizing the steady state may be 
effective in other related problems. 

The problem is a basic one and the solution can be 

used as a building block in a number of other 
geometries and boundary conditions, some of which 
are mentioned. It is also a fundamental solution for uxc 
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in connection with a new solution method called the Astronautics and Aeronautics, Vol. 49, Radiative Transfer 

surface element method. This method is competitive and Thermal Control, edited by A. M. Smith. AIAA, New 

with the finite difference and element methods when 
York (1976). 

unlike geometries are attached such as a rod and a 
5. G. E. Schneider, A. B. Strong and M. M. Yovanovich, 

semi-infinite solid. 
Transient thermal response of two bodies communicat- 
ing through a small circular contact area, Int. J. Heat 
Mass Transfer 20, 301-308 (1977). 

6. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd ed. Clarendon Press, Oxford (1959). 

7. P. H. Thomas, Some conduction problems in the heating 
Acknowledaement-Most of this research was sponsored bv of small areas on large solids. 0. J. Mech. A&. Math. IO, 
Sandia Laboratories, Albuquerque, while the-author was 
on leave there. 8. 
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SOLUTION, POUR LES GRANDES ECHELLES DE TEMPS, DE LA TEMPERATURE 
DANS UN MILIEU SEMI-INFINI AVEC UNE SOURCE DE 

CHALEUR CIRCULAIRE 

RCumB-On prtsente une solution sCrie pour I’histoire de la temptrature locale de surface d’un milieu semi- 
infini chauffi seulement sur une aire circulaire. Dans cette region le flux thermique est constant dans le temps 
et uniforme, tandis qu’en dehors de cette aire la surface est isolke. Un certain nombre de solutions approchees 
est donnC dans la littbrature. Une solution exacte est connue mais elle se presente sous la forme d’une 
intbgrale avec un domaine infini. La solution d&veloppCe ici est plus pratique pour tous les temps sans 
dimension i l’exception des plus petits. On fournit des courbes et des tables. 

En plus de la solution pour la surface, on donne une solution pour certains points g I’intCrieur mais aussi 
pour les Cpoques “lointaines”. 

La solution est importante parce qu’elle est fondamentale dans la conduction thermique et elle est 
frkquemment utilisie pour les corps cylindriques. La solution peut Stre employ&e pour les geomktries finies, 
pour des chauffages variables dans le temps et dans le cas de flux thermiques variant spatialement de faGon 
symktrique. Elle peut aussi &re utilisee dans une nouvelle mithode prometteuse et qui est appellee la mtthode 

des tlCments de surface. 

LANGZElTLijSUNGEN FijR DIE TEMPERATUR IN EINEM 
HALBUNENDLICHEN KijRPER MIT EINER WARMEQUELLE IN FORM 

EINER KRElSFLjiCHE 

Zusammenfassung - Die Arbeit gibt eine Lb;sung fiir den Grtlichen und zeitlichen Temperaturverlauf an der 
Oberflkhe eines halbunendlichen KGrpers an, der ausschlieBlich iiber ein kreisfiirmiges Gebiet beheizt wird. 
Innerhalb dieses Gebiets ist der WBrmestrom zeitlich und Grtlich konstant, wihrend die Oberflache 
auRerhalb der Kreisfliche isoliert ist. Aus der Literatur sind hierfiir eine Anzahl von Ngherungslijsungen 
bekannt. Es existiert such eine exakte LGsung, aber sie hat die Form eines unendlichen Integrals. Die hier 
entwickelte LGsung ist fiir alle dimensionslosen Zeiten - ausgenommen die kleinsten - sehr vie1 bequemer 
anzuwenden. Ausfiihrliche Diagramme und Tabellen werden angegeben. 

Zusgtzlich zur LGsung fiir die Oberfliche gibt es eine Lijsung fiir bestimmte Orte innerhalb des KGrpers 
ebenfalls fiir “groBe” Zeiten. 

Die Lasung ist wichtig, weil sie eine grundlegende Geometrie der WHrmeleitung betrifft und hIufig im 
Zusammenhang mit zylindrischen KGrpern gebraucht wird. Sie kann als Baustein fiir verwandte finite 
Geometrieen bei zeitabhlngiger Erwlrmung und symmetrischen raumlich verinderlichen WhrmestrGmen 
benutzt werden. Die LGsung kann ebenfalls innerhalb einer vielversprechenden neuen Berechnungsmethode, 

der sogenannten Oberflkhen-Element-Methode, verwendet werden. 
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TEMnEPATYPHOE nOflE lIPM 6OjIbU1kiX BPEMEHAX B nO_QYEiECKOHEqHOM 
TEJIE C MCTO’-lHllKOM TEnnA B 0OPME ,QMCKA 

AiiHoTaunn npe:lCTasdlet,o p+meHHe H BH:le pnm .LIR JIOK~:I~HOIO A~M~H~HMR ~0 ape~em rebme- 

paTypbl nOBepXHOCTN IlO:ly6CCKOHe'lHOrO re:la, ,,arpeBaeMoro ,,o ~pyro~oti O~JUCTH. BH~T~H I-rofi 

06naCTH TeWOBOil IIOTOK HB.IRCrCR CTallllOHapHblM I4 OLIHOpO~HbIM, B TO ,,peMH KaK CHapyZKH ROBepX- 

HocTb I43oaHpoeaHa. Ann :,aHHoro c:iyqan B clwreparype MMeeICH pm lfp,i6nImeHHblx peule,lsii 11 

oiwo Towoe petuetlwe.Ho B mite HHrerpa:,a c6eCKofiewo~ 06JiacTbm npezlar-aeMoe R pa60,e pewe- 

HHe IIB:IHeTCII rOpalL,O 60,lee y:106HblM. KOI-;la WCIlO'lblyK~TCH 60pa3MepHbie Bpe'vfeHa %I HCKII,O~eHHehl 

HaHMeHbLLlHX. npWJeneHbl TaKme MHO,O',MCI,eHHb,e KpMBble H Ia6J,WIbl. 

nOMHM0 pelJletIHtn ,%,sI ,,OBepXHOCTM AlHO pe,,leHile ,-L,S, HeKOTOpblX o6naCreii BHyTpI, I,O:ly6eC- 

KoHeqHoro Te.la M Tome :C,H dioJlbumx)) ,t,alteHMii speh4eHM 

npeLIJ,araeMOe pemewe IiMeeT "axHoe IHaqe,,Me H CBR~M C ,e~. 910 pacchmrpmaewu reoh4eTpm 

IlB,lReTCR OCHOBHOfi R ?a,',>l'laX rellJ,O"pOBO,,,lOCl,4 TC'I ,lW,H,,:,pWleCKOti (POpMbl. Otto VOwieT HCl,O!,b- 

30BaTbcn KaK cocTasHaR qaCTb np~ peuleHim 3a;lav ,115, Ko,,ev,,blx Ieo~eTpliR np14 ~eC~a,lMoHapHoM 

HarpeBe H llp# paCCVOT~,lW, CHMMeTpUYHblX C;,yWeB C HepX3HOMCpHblM TeIT,lOBbl?4 "OrOKOhl. KpoMe 

~010. elo MOTHO CI~~,~.I,,~OW~T,, ,, ,,OBOM r~epcneKltinHost ve ro,le paweTa. Ha3bmaevox1 cleronou 

~vexfetcTapfroii rI.qoIua.lKkf. 


